Correspondence Priors for Binocular Image Data via Canonical Correlation Analysis
نویسندگان
چکیده
منابع مشابه
Cross-Modal Image Clustering via Canonical Correlation Analysis
A new algorithm via Canonical Correlation Analysis (CCA) is developed in this paper to support more effective crossmodal image clustering for large-scale annotated image collections. It can be treated as a bi-media multimodal mapping problem and modeled as a correlation distribution over multimodal feature representations. It integrates the multimodal feature generation with the Locality Linear...
متن کاملBenthic Macroinvertabrate distribution in Tajan River Using Canonical Correspondence Analysis
The distribution of macroinvertebrate communities from 5 sampling sites of the Tajan River were used to examine the relationship among physiochemical parameters with macroinvertebrate communities and also to assess ecological classification system as a tool for the management and conservation purposes. The amount of variation explained in macroinvertebrate taxa composition is within values r...
متن کاملCanonical correlation analysis for functional data
Classical canonical correlation analysis seeks the associations between two data sets, i.e. it searches for linear combinations of the original variables having maximal correlation. Our task is to maximize this correlation, and is equivalent to solving a generalized eigenvalue problem. The maximal correlation coefficient (being a solution of this problem) is the first canonical correlation coef...
متن کاملMulti-view Regression Via Canonical Correlation Analysis
In the multi-view regression problem, we have a regression problem where the input variable (which is a real vector) can be partitioned into two different views, where it is assumed that either view of the input is sufficient to make accurate predictions — this is essentially (a significantly weaker version of) the co-training assumption for the regression problem. We provide a semi-supervised ...
متن کاملCorrespondence between fMRI and SNP data by group sparse canonical correlation analysis
Both genetic variants and brain region abnormalities are recognized as important factors for complex diseases (e.g., schizophrenia). In this paper, we investigated the correspondence between single nucleotide polymorphism (SNP) and brain activity measured by functional magnetic resonance imaging (fMRI) to understand how genetic variation influences the brain activity. A group sparse canonical c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Computational Neuroscience
سال: 2012
ISSN: 1662-5188
DOI: 10.3389/conf.fncom.2012.55.00124